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ABSTRACT
Google Maps and its spin-offs are highly successful, but
they have a major limitation: users see onlypicturesof geo-
graphic data. These data are inaccessible except by limited
vendor-defined APIs, and associated user data are weakly
linked to them. But some applications require access, specif-
ically geowikisandcomputational geowikis. We present the
design and implementation of a computational geowiki. We
also show empirically that both geowiki and computational
geowiki features are necessary for a representative domain,
bicycling, because (a) cyclists have useful knowledge un-
available except from cyclists and (b) cyclist-oriented auto-
matic route-finding is enhanced by user input. Finally, we
derive design implications: for example, user contributions
presented within a route description are useful, and wikis
should support contribution of opinion as well as fact.
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Wiki, geowiki, computational geowiki, web-map.

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces]: Collaborative
computing, computer-supportedcooperative work, web-based
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INTRODUCTION
Google Maps transformed mapping, bringing geographic
information systems to the masses in a convenient form.
“Mashups”, visualizations of existing data sets on top of
Google Maps, soon emerged – ranging from estimating cab
fare1 to finding volcanoes2 to sending “geogreetings”3. Next
came open content – sites like WikiMapia and PlaceOpedia
added wiki ideas, letting anyone add or edit places, text, and
other information on top of a map.

1http://yellowcabnyc.com/farefinder
2http://geocodezip.com/volcanoBrowser.asp
3http://geogreeting.com/
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Figure 1. Google My Maps view of the San Diego Zoo and vicinity.

However, the powerful Google Maps infrastructure has a
major limitation: users cannot interact with the geographic
data. Instead, they are shownpicturesof the data, and any
content they add is a separate – and weakly linked – layer.

Consider the Google My Maps view of San Diego shown
in Figure 1. The “pushpin” near the center indicates a user-
added place. Users can collaboratively add and edit arbitrary
descriptions of this place. However, contrast this with the
various museums filling the lower half of the map – users
cannot share their experiences at (e.g.) the Timken Museum
of Art, because its representation is just a set of pixels.

To be precise, Google knows about these places, but it does
not expose them as interactive objects unless and until a user
searches for them. Then they show up as pushpins, and users
can add them to a My Map, read or write descriptions, or do
other place-related interactions. However, the possibilities
are only those that Google has chosen to provide. In partic-
ular, the possibilities for the transportation network arevery
limited. Users can’t even share information like “avoid this
section of Florida Drive during rush hour”, let alone imple-
ment a new route-finding algorithm.

This matters because some applicationsrequireaccess to this
geographic data. A full-fledged wiki and many promising
computational applications are simply impossible on top of
Google Maps. More deeply, varying levels of geographic
data access enable different types of applications:



1. Pictures. Geographic data is available only through pre-
rendered image tiles or specialized API functions such as
geocoding or computing driving directions. That is, one
can only “see” the map data; one can’t interact with it
except in limited vendor-chosen ways. As noted above,
maps built on APIs provided by Google and its peers pro-
vide only this level of access to base map data.

2. Interaction . Map data is available as individual objects
and relationships but cannot be modified. This is required
for applications needing tocomputeusing geodata – e.g.,
to implement a custom route-finding engine – or simply
to annotate (tag, rate, comment on) geographic objects
without relying on weak co-location links. Such applica-
tions include snow removal (a citizen could notify the city
that “thisalley is icy”) and wildfire management (incident
commanders could compute risk scores for fire-fighting
teams based on fire threats to and other attributes of their
designated evacuation routes).

3. Modification . Map data is available as objects and rela-
tionships and can be modified. This is required to imple-
ment a full-fledgedgeowiki, where users can add, edit, and
monitorall geodata without arbitrary distinction between
“user” and “base” data.

Of particular note are computational geographic applications
that require user input –computational geowikis. For ex-
ample, bicyclists need route finding in a transportation net-
work whose properties and structure are fully known only by
the cycling community, and which may change [27]. Many
transportation domains have similar problems. Another im-
portant domain is public health: for example, effective mod-
eling of epidemic progression depends on accurately captur-
ing the geographic behavior of carriers – information col-
lected in a distributed fashion by individual doctors.

Our work presents the following contributions. We invented
the notion of a computational geowiki and created such a
system, producing significant design innovations and solv-
ing major implementation challenges. To evaluate our sys-
tem, we studied it in the context of the bicycling community
(chosen for reasons detailed later). We show empirically that
cyclists know much cycling-relevant information that is use-
ful and not available except from cyclists; thus, a geowiki is
a powerful knowledge sharing tool for the cycling commu-
nity. We also found that the crucial computational service
of route-finding may be more accurate when based on user
input; thus, a computational geowiki offers enhanced value
to cyclists. Our results in this representative domain suggest
the general utility of geowikis and computational geowikis.

In the remainder of the paper, we first survey related work,
focusing on existing systems that instantiate aspects of the
geowiki approach, then briefly describe the bicycling do-
main. We next describe the design and implementation of
our geowiki, illustrating the innovative design features and
explaining key implementation challenges solved. We then
present our experimental design and methods, followed by
our results and implications. We conclude with a summary
and possiblities for future work.

RELATED WORK
Over the past decade, a new form of collaborative interac-
tion has emerged on the web. Users no longer just consume
information or discuss topics; they work together to produce
artifacts of lasting value[11]. Collaborative filtering sys-
tems leverage users’ ratings of items (movies, books, con-
sumer products, etc.) to enable personalized recommenda-
tions. News sites like Reddit, Digg, and Slashdot rely on
user opinions to filter and order stories. Tagging systems
like del.icio.us, Flickr, and CiteULike let users associate
keywords with items, facilitating searching and exploration.
Q&A sites like Yahoo! Answers and Experts-Exchange form
knowledge economies, where users spend points to ask ques-
tions and earn them for answering. Finally, wikis take the
user-provided content to its logical end: anyone can add,
edit, or delete anything.

Scholarly interest in this form of interaction is intense, en-
compassing both studies of current sites and techniques and
efforts to develop novel and better ones [6, 12, 17, 22, 30].

Wikis
The Wikipedia online encyclopedia is the most famous and
successful wiki, containing over 2 million articles in En-
glish, ranking among the 10 most visited sites on the Web,
and possibly having accuracy similar toEncyclopedia Bri-
tannica, at least for some types of articles [15]. Much re-
search has been devoted to Wikipedia. For example, Viégas
et al. [32] and Priedhorsky et al. [26] have shown that van-
dalism and other damage in Wikipedia is usually repaired
quickly. Kittur et al. [20] and Priedhorsky et al. [26] found
that small minorities of editors produce the vast majority of
the content and value of Wikipedia. Adler and Alfaro de-
veloped a scheme to compute reputation of authors based
on whether their edits persisted or were removed, and used
this metric to compute the credibility of each section of
an article [1]. Bryant et al. interviewed Wikipedia editors
and described how the activities they engage in on the site
change as they progress from novices to experienced edi-
tors [8]. Finally, theoretical work by Cosley et al. suggests
that users are as effective as experts in reviewing other users’
work [10], and that the wiki model and traditional review-
before-publication result in the same quality, but the wiki
model achieves it faster [11].

Geography
The field of geographic information systems (GIS) is con-
cerned with visualizing, analyzing, and manipulating geo-
graphic and spatial data [23]; traditionally, GIS work is done
by experts using specialized software. The GIS community
has proposed various types of collaboration [2, 24, 29].

In particular, geographic “citizen science” is becoming an
established approach. For example, an annual bird census is
done mostly by laypeople [7], and the National Map Corps is
a volunteer program to correct and update United States Ge-
ological Survey maps [4]. Professional geographers manage
these projects and process and vet the data submitted by cit-
izens; often, as in the case of the National Map Corps, these
professionals are a bottleneck [4].



More recently, geographers have become interested in what
they call “volunteered geographic information”. Goodchild
has argued for the value of average people’s geoknowl-
edge [16], and geographers held a scholarly meeting in
2007 to set a research agenda for the area4. However, no
systems have been built, and geographers distrust the wiki
model, perceiving tension between data quality and open
content [16]. On the other hand, open content is ascendant
within the CSCW community. This is due in no small part
to the great success of Wikipedia – contrasting dramatically
with the failure of its predecessor, Nupedia, which had an
elaborate credentials-based review process.

Steps toward Geowikis
Adapting a wiki to the geographic domain results in age-
owiki [27]. Key adaptations include: WYSIWYG editing
to make manipulation of geographic objects tractable for
users; versioning that works on a landscape of tightly cou-
pled geo-objects rather than a collection of individual docu-
ments; and monitoring tools appropriate for the geographic
domain, such aswatch regions(rather than watch lists) and
visual diffing tools to show geographic changes effectively.

Many systems partially implement the geowiki model. Open-
Guides is a wiki travel guide, WikiMapia lets users enter
and edit information for places and rectangular regions, and
Google Maps lets users edit the locations of searched-for
places and add new places. Google My Maps goes beyond
this, allowing collaborative editing of geographic points,
paths, and polygons, all of which can be annotated with
text, images, and videos. “Digital graffiti” systems let users
associate virtual information with physical geography, and
this information can then be accessedin situ with location-
aware devices [9, 14]. Fundamentally, however, these sys-
tems work at the Pictures level: while they put wiki infor-
mation into a geographic context, the base geodata are not
available for annotation or editing.

Other projects come closer to true geowikis. The most fa-
mous is Open Street Map5, an effort to build a worldwide
street map with a wiki. Another is the Cambridge Cycling
Campaign’s “journey planner” for cyclists6. These projects
offer WYSIWYG editing of the transportation network, but
key wiki features like watch regions and a recent changes
list are missing7 – meaning that the transparency necessary
for effective collaborative editing is missing. Also, theyfo-
cus solely on mapping the transportation network, so anno-
tations and other user contributions beyond editing the net-
work are not possible. These sites offer some functionality
at the Modification level but none at the Interaction level.

Efforts to enhance navigation with user contributions also
exist. Some GPS devices let users enter map corrections
directly into the device and subscribe to corrections made
by other users [31]. Navteq, a major mapping firm, accepts

4http://www.ncgia.ucsb.edu/projects/vgi/
5http://www.openstreetmap.org
6http://www.camcycle.org.uk/map/route/
7While a recent changes list is specified in the OSM API, it is not
implemented in the OSM editing tools.

user map corrections on its website, but these are checked by
professionals before being offered to other users [25]. Bed-
erson et al. have proposed a system for augmenting automo-
bile route-finding with “subjective human experience” [5].
Finally, Counts and Smith have proposed a system that uses
location-aware sensors to construct route information forin-
dividuals that then can be shared with others [13].

Previous work has demonstrated the utility of open content,
in particular wiki-style mass collaborative editing. However,
neither scholars nor practitioners have previously extended
this notion to geography in the comprehensive way essential
to many applications.

THE CYCLING DOMAIN
Prior work suggests that cycling is a good domain for a
geowiki. We studied the information needs of the bicy-
cling community [27], finding that cyclists had a tradition
of knowledge-sharing, lacked an up-to-date and comprehen-
sive resource for obtaining cycling-oriented informationand
routes, and were enthusiastic about the wiki model. The cur-
rent paper gives empirical evidence for some beliefs held by
cyclists, which were reported in this past work.

Many existing web sites aim to support cyclists’ route infor-
mation needs. Gmaps Pedometer8, Bikely9, and others let
users manually define and share routes. Wayfaring10 enables
collaborative editing of routes and places of interest. A few
offer automatic route finding, e.g., YTV Journey Planner for
Cycling11 and Fietsrouteplanner12. Closest to our work is
the Cambridge Journey Planner (noted above), which offers
user editing of the transportation network but lacks critical
wiki features. Again, these sites recognize the potential of
open content to meet the information needs of cyclists, but
are limited by incomplete scope or clumsy user interfaces.

Our system provides cyclist-specific automatic route-finding.
It uses the A* search algorithm [18] over the transportation
graph, weighting edges (blocks) with length times bikeabil-
ity. We computed bikeability using two methods. If enough
attributes were available for a block (at least speed limit,
daily traffic volume, and number of lanes), we used a met-
ric developed by the Chicagoland Bicycle Federation [3]
(here called CBF), with minor modifications13. We chose
this metric because it was the only existing metric we could
find whose input parameters were covered in the data for
our area (which has typical coverage). Even so, about 20%
of the blocks in our database did not have enough data to
compute CBF. For these, we used an ad-hoc metric we call

8http://gmap-pedometer.com
9http://www.bikely.com

10http://wayfaring.com
11http://kevytliikenne.ytv.fi/?lang=en
12http://fietsersbond.nl/fietsrouteplanner/
13Specifically: expressways were always rated very poor; wide
shoulders earned a 1.5-star rating increase, not 2, and verywide
shoulders did not earn an additional increase; the presenceof bike
lanes increased the rating by 0.5 stars, and bike lane width was
included in shoulder width; all lanes were assumed to be 12 feet
wide. These modifications were motivated by data availability and
the first author’s expertise as a bicyclist.



Figure 2. Screenshot of our user interface. On the right is a modern “slippy” map which works similarly to Google Maps, whi le on the left are details
about the selected object. User-contributed content, including points and annotations on blocks, is visible. (This figure is best viewed in color.)

“Naive”: roads were rated based on their type (e.g., munici-
pal street, state highway, U.S. highway), and bike paths were
rated based on the length of the block (longer distances be-
tween intersections were rated better).

GEOWIKI DESIGN AND ARCHITECTURE
Our fundamental challenge was to produce a system that
rivaled Google Maps in quality of user experience and
performance, while also offering full implementations of
Interaction- and Modification-level geowiki functionality. In
this section, we outline the main design features14 (with ref-
erence to the screenshot shown in Figure 2), then identify
implementation challenges and how we solved them.

Design
Web-map interaction. Basic display and navigation work
similarly to Google Maps: geographic features such as
streets, water bodies, and green space are distinguished vi-
sually using color, and users navigate by dragging the map
or using the pan/zoom controls. A hideable map key (C)
reminds the user how colors and other marks map to data.

Comments and Ratings.Users can click on any geographic
object (e.g., the road segmentA) to bring up an editor (E) to

14As of this writing, a few features are unimplemented, specifically,
rating places, watch regions based on routes, and reverting.

view and edit the object’s attributes, comments, and rating.
The meaning of a rating is domain-specific: here, the rating
of ablock(i.e., a segment of road from one intersection to the
next) indicates its bikeability on a scale of 1 (“very poor”)to
5 (“excellent”). For blocks not yet rated by the user, we
estimate ratings using techniques explained below. Block
annotations are visualized on the map; each block is colored
to indicate its rating and the source of that rating (D), and a
purple halo (e.g.,B) indicates comments on it.

Wiki Editing. Comments on geographic objects can be
edited by any user. Further, geographic objects themselves
can be edited; any user can add, delete, or modify the ge-
ometry of points (places) or blocks. Ratings, however, are
private to each user; this follows standard practice. As in
text wikis, in-progress work is managed on the client before
being saved in batch to the server upon user command, and
users have access to unlimited undo and redo.

Wiki Monitoring. Again as in text wikis, users can review
the editing activity of other users. A geowiki provides a his-
tory browser (recent changes list) andwatch regions, which
adapt the wiki watch list to the geographic domain. Users
can define regions of interest and then be notified when geo-
graphic objects in those regions are modified; these regions
can be defined as polygons or relative to a route (e.g., “no-
tify me of any changes within 200 meters of my commuting



Figure 3. Geographic diffing. New geometry is blue, while oldgeome-
try is red; if a point was moved, the old and new versions are connected
with a line. An orange halo indicates non-geographic changes (“Mid-
town Global Market” and “Water Fountain”). The user would be noti-
fied that “Pizza” was added and “Post Office” was moved, since these
changes intersect his or her (mocked-up) watch region.

route”). Also,geographic diffing(Figure 3) helps users vi-
sualize changes in geography.

Computational Support. Finally, the geowiki supports
domain-specific algorithms. One useful in many domains
is route finding: users enter start and end addresses and per-
haps domain-specific preferences such as block properties
that are important to them. The system computes a route
and shows it both visually on the map and as a printable list
of turns. As noted above, we compute routes using the A*
algorithm, with a domain-specific edge weighting function.
Currently, we use generic bikeability metrics. However, our
results (detailed below) argue for personalizing weights us-
ing a technique like collaborative filtering [21].

Implementation
The fundamental implementation challenge in realizing our
design was to create a web-based system with a good user
interface and acceptable performance. This section details
these challenges and how we solved them.

Performance. Achieving good performance for a geowiki
is difficult, more so than for Google Maps and other systems
that operate at the Pictures geodata access level. Not only
must a web browser manage thousands of interactive, click-
able objects, geodata must be delivered from the server to the
client in a form manipulable by users and software. In other
words, it seems impossible to serve pre-rendered image tiles.

However, we make a critical observation: in practice, geo-
graphic data objects cannot be manipulated by users if they
are too “small” visually. In other words, if a map is zoomed
out, users can’t visually distinguish or accurately point to
specific geographic features. We exploit this observation by
implementing a two-part scheme for serving geodata. When
zoomed out beyond a map scale of about 1:24,000 (a re-
gion roughly 4km square in a 1024x768-pixel window), we
serve pre-rendered tiles; when the user zooms in, reducing

the number of geo-objects in the viewport to a tractable level,
we switch to serving individual objects containing vector ge-
ometry and full attributes.

The performance savings gained by this scheme are signif-
icant. For example, at the most-zoomed-in level where we
serve raster tiles, a typical view of an urban area might con-
tain 3-4,000 geographic objects comprising about 250 kB of
either compressed vectors or raster tiles. However, the inter-
face would be unacceptably slow if it had to render this many
discrete objects, and when zooming outn levels, space con-
sumption increases byO(n2) in vector mode but is roughly
constant in raster mode.

Client technology. We implemented the web client in
Adobe Flex; it runs in a browser under the widely deployed
Flash Player 9 virtual machine. We evaluated other tech-
nologies, notably AJAX and SVG, but found them too slow
or not widely supported; also, the user experience quality
was significantly better with Flex. The client communicates
with the server using HTTP, transferring geo-objects and
support data using a lightweight custom XML serialization
protocol and tiles using standard HTTP file requests.

Versioning. Wikis require versioning: the system stores pre-
vious states, making it possible and easy for users to under-
stand the progress of work and torevert undesired edits –
both critical to making the open wiki editing model work. In
a geowiki, inter-object relationships (e.g., which blockscon-
nect to which other blocks) are as important as the objects
themselves, so versioning operates globally rather than atthe
per-article level typical of a text wiki. The history browser
can “filter” revisions, displaying only those affecting objects
in the current viewport or a specified watch region.

Base geodata.We seeded the wiki with GIS data from our
state’s Department of Transportation. These data are free to
obtain, modify, and republish; this is typical for the United
States but unusual in many parts of the the world (the moti-
vation for Open Street Map). Considerable manual cleanup
of the data is required, a task well-suited for the wiki model.

Status.We are in the final stages of alpha testing, with about
100 users, and preparing to deploy the system for public use.

EXPERIMENTAL DESIGN AND METHODS
As mentioned above, we seek to establish whengeowikisare
useful and whencomputational geowikisare useful, general
questions which cannot be studied in general. We address
them with an experimental evaluation of our computational
geowiki applied to the cycling domain; results using this rep-
resentative community also provide evidence at the general
level. This section explains our recruiting methods and ex-
perimental design.

Subjects and recruiting. We recruited active cyclists using
online methods, posting invitations on several mailing lists
and forums frequented by cyclists as well as Craigslist. This
skewed our subject pool towards cyclists who are comfort-
able on computers, which seems reasonable because we are



evaluating computational support tools. Subjects were 18 or
older and had spent at least 3 hours or 25 miles bicycling in
the Uptown neighborhood of Minneapolis, Minnesota dur-
ing the year preceding the study. They were compensated
with a gift certificate to a local bike shop.

After conducting 6 pilot interviews, we ran the experiment
with 30 subjects. One of the interviews failed, so we report
results for 29 subjects. 17 of the subjects were men and 12
women. 17 reported riding “nearly every day”, and 19 rode
at least 50 miles per week.

Tasks. The basic form of an interview was a series of four
tasks, each followed by a mini semi-structured interview.
The four tasks were:

T1. Route-finding. The subject used our system to compute
a familiar route of their choosing.We asked:whether
the subject liked or disliked the route, how they cur-
rently learned new routes, and how useful these learning
methods were (on a scale of 1 to 5).

T2. Entering places. The subject entered at least 4 new
points (places) that he or she wanted to share with
other cyclists. We asked:why the new places were
chosen, whether it was difficult to think of places to
enter, how subjects currently found information about
cycling-relevant places, and how well these information-
finding methods worked.

T3. Editing comments. The subject entered or modified
at least 4 comments about places or blocks.We asked
questions analagous to Task 2. Additionally, when any
of the last 17 subjects read an existing comment, we
asked them if it was useful.

T4. Rating bikeability. The subject rated the bikeability of
12 or more blocks on a 5-star scale.We askedquestions
analagous to Task 2.

Points and comments edited by one subject were visible
to subsequent subjects, while routes and ratings were not.
Keeping routes and ratings private is consistent with stan-
dard practice, since this information is considered personal.
We concluded interviews by asking questions about privacy,
the usefulness of several different information resources, and
satisfaction with current information-gathering methods.

RESULTS
We next present our results, which show the utility of a ge-
owiki and computational geowiki for cyclists. First, cyclists
knew useful information that was not available otherwise.
Second, route-finding may be more accurate when based on
user input than when based on standard bikeability metrics.

R1. Cyclist knowledge useful and unavailable elsewhere
Subjects had no problem entering the data they were asked
to, often entered additional data, and reported that it was
easy to think of this data. Further, our content analysis
revealed a rich diversity of entered information – “subcul-
tural community” resources, personal experiences and ad-
vice, and detailed cycling-relevant information. Finally, this

information is clearly useful to cyclists and difficult to obtain
except from cyclists.

R1a. Cyclists have knowledge
Summary statistics. Places: Subjects entered a total of
129 new places. 28 of 29 subjects entered at least the 4
requested places, and nine entered at least 5.Comments:
Subjects edited a total of 224 comments (71 on places, 153
on blocks), with 32 edited by at least two subjects (19 on
places, 13 on blocks). All subjects edited at least the 5 re-
quested comments, and seven edited 12 or more.Ratings:
Subjects entered 828 bikeability ratings for blocks. 26 sub-
jects entered at least the 13 requested ratings, nine entered at
least 23, and the top two entered 88 and 121 ratings.

Knowledge self-reports. A majority of subjects reported
that it was easy to think of comments (25 of 29) and ratings
(17); 10 subjects reported ease in thinking of new places.
However, majorities in all three tasks thought that it would
be easy if they were not under the pressure of an interview
(16, 26, and 19 subjects on places, comments, and ratings,
respectively) and that they had more information they could
share (24, 22, and 20).

Content analysis.
The core of our argument that cyclists have knowledge is a
content analysis of the places (Task 2), comments on places
(Task 3), and comments on blocks (Task 3) entered by sub-
jects. We coded these three groups of data separately, con-
sidering both the data themselves and relevant interview
notes. Two coders independently defined categories for each
group, then met to produce consensus categories. The same
two coders then independently applied these categories, re-
solving disagreements by discussion. In general, categories
were non-exclusive – i.e., one item can be in multiple cate-
gories at each level – except for theOthercategories. There-
fore, membership counts cannot be summed.

Places.Table 1 summarizes our content analysis of places.
We found three major categories.Lifestyle/communityplaces
relate to everyday urban life, e.g. post offices, zoos, book-
stores, parks, and art galleries.Food/drinkplaces are where
these two items can be obtained.Cycling-specificplaces are
directly related to the practice of bicycling, including land-
marks, shortcuts, meeting places, and big hills. A surprising
observation is that few places are cycling-specific: this cat-
egory accounts for only 23% of the total. We first discuss
these places, then the other two categories.

The largest sub-category of cycling-specific places island-
marks. In principle, nearly any place could serve as a land-
mark; however, we categorized a place as such only if a sub-
ject described it that way explicitly (e.g., to “key off of”)or if
this use was clear from their interview comments.Meeting
spotsare analagous.Road/trail information would ideally
have been attached to a block; that is, if subjects had under-
stood the system fully, these would have been block com-
ments instead of place comments. Some of these cycling-
specifc places strikingly illustrate our hypothesis that the
knowledge cyclists have is difficult to obtain; e.g., that cy-



Category # Example(s)
Lifestyle/community 53

Community resource 22 post office ; Como Zoo ; Walker library ; YWCA – uptown
Retail – non-food 17 Arise Bookstore ; Target ; Chicago Lake Liquor
Park 14 Hidden Beach ; Como Zoo ; Community Garden
Arts 14 Orchestra Hall ; Soap Factory [an art gallery]

Food/drink 47
Restaurant 23 Black Forest restaurant ; Longfellow Grille
Coffee shop 17 Espresso Royale
Groceries 8 Kowalski’s ; Byerly’s ; Penzie’s Spices
Water fountain 2 water fountain

Cycling-specific 30
Landmark (explicit) 13 Obnoxious Billboard ; Lighthouse ; Old Grain Belt Brewery
Road/trail 8 Brackett Park, Bridge under greeenway to 37th Ave. ; New Greenway Bridge!
Cycling-specific (other) 7 franklin ave hill ; difficult intersection to ride
Meeting spot (explicit) 3 Critical Mass gathering area ; bike trick hang out

Other 6

Table 1. Categorization of the 129 places entered by subjects.

Category # Example(s)
Objective place information 60

Description 57 collectice [sic] bookstore with activist literature ; No eating spot inside, though.
Events 6 Starting point for Messenger Challenge and Stupor Bowl

Subjective place information 47
Review 44 Wonderful Asian food; Best priced bike repairs
Advice 6 Lock your bike here, I know the people all seem cool but do it anyhow
Personal narrative 3 we enjoy visiting this place ; Every time I ride this street, Isee something new.

Cycling-specific 23
Bike parking 9 Plenty of bike parking in front. ; No bicycle-specific parking
Bikeability notes 8 Silly one way trails ; useful exit/entrance off/onto the Greenway
What cyclists do at place 7 Lock your bike here; Starting point for Messenger Challengeand Stupor Bowl

Other 3

Table 2. Categorization of the 71 place comments edited by subjects.

clists gather at a particular place to do bike tricks, or thata
particular lighthouse is a critical landmark on certain routes.
Cycling-specific places can play an important role in route-
finding; e.g., relevant ones – perhaps chosen in a person-
alized way – could be added to a route description to aid
orientation and make it easier to identify turns.

Turning our attention to non-cycling-specific places (76%
of the total), we assume that subjects followed task instruc-
tions, believing that fellow cyclists would find these places
interesting even though they weren’t about cycling per se.
Why would they think this? We conjecture that cyclists
know their peers well enough to know what else – beyond
cycling – they tend to like. The places they entered form a
cultural snapshot of the local bicycling community; i.e., they
mark information of interestto cyclists, but not necessarily
of interestwhile cycling. This result, consistent with [28],
suggests that information resources for cyclists, and perhaps
for many other groups, should support off-topic conversation
as a useful means to build community, rather than suppress-
ing it as undesirable noise.

Place comments.The tendency to enter non-cycling-specific
information continued for place comments, although not as

strongly; Table 2 summarizes these comments. The most
popular categories wereobjective place information– essen-
tially factual descriptions of places – andsubjective place
information, typically comprising brief free-form reviews.
92% of place comments fell into one of these two categories,
while 32% contained cycling-specific information. (Note
that there was considerably more overlap in categories for
comments than for places.)

However, here the critical distinction is between objective
and subjective information. This shows that geowikis must
recordopinionas well as fact. Some wikis already provide
for non-factual discussion; for example, each Wikipedia ar-
ticle comes with an associated “talk” page where users can
discuss the article’s content. However, these talk pages are
for discussion of what the facts are and whether Wikipedia
conventions are being followed –not the expression of sub-
jective opinions about the subject matter. Our data suggest
that objective fact and subjective opinion both deserve a first-
class role. Therefore, we believe an organization similar to
that of product reviews on e-commerce sites is more appro-
priate: both fact (features, price, etc.) and user opinion are
present, and clearly distinguished. This result also showsthe
desirability of letting users rate places.



Category # Example(s)
Description 108

Lane/facility type 61 pretty wide ; Bike lane on right side
Description (other) 40 Several road crossings with 4 way stop signs
Surface quality 22 smooth pavement ; a lot of potholes
Snow removal 10 Plow conditions are not that great here
Current conditions 6 not currently plowed well (12/10/07)

Worries/annoyances 100
Motor traffic (quantity) 48 heavy traffic ; Quiet
Worries/annoyances (other) 39 many stop signs ; sketchy at night (crime)
Motor traffic (behavior) 20 people in a rush ; can be dangerous because of turning cars
Hazards 19 possible broken glass hazards ; covered in snow, very slick
Construction 9 Construction is ongoing ; Lots of construction in this area

Subjective information 41
Advice on route choice 35 great place to enter the greenway coming from the whittier neighborhood.
Personal narrative 5 Just recently discovered
Scenery 3 Gets into some sections with woods and hills that surround the trail

Other 6

Table 3. Categorization of the 153 block comments.

Block Comments. Comments on blocks are summarized in
Table 3. The major categories aredescriptions, including
basic properties of a block like its width and surface type;
worries/annoyances, e.g. quantity and quality of motor traf-
fic or construction; andsubjective information. In contrast
to places and place comments, virtually all block comments
relate directly to cycling. We conjecture that this is because
when subjects focused on where they actually cycled – the
paths and roadways – they naturally thought of information
useful while cycling. Block comments are useful in both
evaluating and following routes; e.g., a comment that a block
has many potholes could lead a cyclist to choose a different
route or to ride that route with better preparedness.

Intuitively, the type of information revealed by our content
analysis seems useful: cyclists “obviously” want to know the
places they can go, what those places are like, and what to
expect on their way there. We next present our data, which
support this intuition.

R1b. This knowledge is useful
Subjects found information from other cyclists useful, both
when asked about specific entered information and when
asked about the general utility of such information.

Other cyclists’ comments were useful. When a subject
read a comment edited by another subject, we asked if the
comment was useful (for the first 6 comments read per sub-
ject). 50 of 64 comments read (70%) were judged useful.

Other cyclists were considered useful. We asked sub-
jects about the utility of various sources of cycling informa-
tion. When queried after each task about current information
sources, subjects frequently mentioned other cyclists, giving
an average utility rating of between 3.5 and 3.9 out of 5, de-
pending on the task. Also, in the final set of questions, sub-
jects rated the utility of other cyclists’ bikeability opinions as
a mean of 4.14. This is slightly higher than (though not sta-
tistically different from) their rating of “objective bikeabil-

ity factors” at 3.97. We suspect that these figures actually
understate the utility of other cyclists’ opinions. 2/3 of the
subjects said that individual cyclists differ in their bikeabil-
ity assessments. Therefore, we conjecture that a system that
computespersonalizedroutes using only the ratings of like-
minded cyclists will lead to other cyclists’ opinions having a
higher perceived value.

Social connections may mean better knowledge access.
Many types of information flow through social networks; our
results hint that this is true for cycling-related information
as well. The concluding survey asked subjects to respond to
the following two statements on a 5-point Likert scale, from
“strongly disagree” to “strongly agree”: (1) “It is hard to
find other cyclists who have the specific information I need”
and (2) “I am satisfied with my existing methods of gath-
ering information for planning rides and selecting routes”.
The correlation between responses to these two items was
-0.40. In other words, having weak links with other cyclists
may make it harder to find cycling knowledge. This argues
for a geowiki, which collects and distributes knowledge and
supports social ties.

R1c. This knowledge is available only from cyclists
After each task, we asked subjects how they currently ob-
tain each type of information they entered into the system
and how useful their methods were. Table 4 details the re-
sponses. Two key findings are apparent:

• “Trial and error” was most useful for every task (4.2 to
4.6 out of 5), and was mentioned second most often. In
other words, subjects told us the best way to get useful
knowledge was to go out find it themselves. While ef-
fective, this is time-consuming and particularly unhelpful
when answers are required immediately.

• “Word of mouth” was mentioned most often and was rated
as quite useful (3.5 to 3.9). That is, cyclists try to benefit
from each other’s experience whenever they can. While



Source Task 1 Task 2 Task 3 Task 4
Word of mouth 18 3.5 23 3.8 23 3.9 19 3.8
Trial & error 24 4.2 8 4.3 18 4.3 14 4.6
Internet forums 7 3.9 6 3.4 14 3.3 11 3.2
Paper maps 15 3.8 5 4.0 2 2.5 15 3.3
Online maps 17 3.6 3 4.3
Internet search 11 4.2 4 3.5
Specific websites 6 3.7 4 2.3
Newspapers 4 2.9 2 3.8
Phone book 6 2.3
Advertisements 3 2.3 1 2.0
Other 5 2.8 4 3.1 3 3.0 3 2.7

Table 4. Information sources currently used by subjects forfind-
ing routes (Task 1), places (Task 2), properties of places and blocks
(Task 3), and bikeability (Task 4). The table shows the number of
subjects who mentioned each source and the mean usefulness for each
source on a 5-point scale.

not as useful as personal experience, this method is less
time-consuming and has a wider reach. Also, as we sug-
gest, a system that matches cyclists with similar opinions
is likely to improve the utility of word of mouth.

The results of this section strongly support the utility of age-
owiki for cyclists. Cyclists have much knowledge to enter,
they judge the knowledge contributed by others to be use-
ful, and this knowledge is not readily available elsewhere.
We next consider the usefulness of our system as acompu-
tationalgeowiki.

R2. Computation is more effective with user input
Our prior work has shown that cyclists need cycling-specific
route-finding – that is, Google Maps, MapQuest, and their
peers do not meet their needs [27]. Here we explore whether
route-finding for cyclists is improved with user input.

Subjects entered 828 bikeability ratings on 637 blocks. Ta-
ble 5 summarizes the effectiveness of three predictive meth-
ods, two generic and one based on user input.Naive is
our simple bikeability formula that could be applied to all
blocks. CBF is a formula published by the Chicago Bicy-
cling Federation [3]; it could be applied to only 542 of the
637 user-rated blocks due to missing block attributes.UAvg
predicts a user’s rating for a block as the mean of the other
user ratings for that block (i.e., leave-one-out); this could be
applied to the 136 blocks with at least two user ratings.15

The results were surprising. First, the two generic methods
performed similarly, even though one (CBF) is a “serious”
bikeability metric while the other (Naive) is an ad-hoc met-
ric created to fill in the gaps where data to compute CBF
were lacking. Second, the simple UAvg method modestly
outperformed both generic methods.

These performance numbers are similar to good rating pre-
dictors in other domains when compared on MAE [19].
However, we conjecture that for transportation domains like

15In the user interface, estimated ratings use CBF if it is available
and Naive otherwise.

Naive CBF UAvg
Total user ratings 828 671 327
Mean absolute error (MAE) 0.80 0.74 0.65
Predictions in error by≥ 1 star 58% 54% 45%
Predictions in error by≥ 2 stars 16% 17% 11%
Predictable blocks 637 542 136
Blocks w/ mean error≥ 1 star 61% 52% 46%
Blocks w/ mean error≥ 2 stars 17% 18% 12%

Table 5. Effectiveness of different techniques in predicting user bike-
ability ratings. Mean absolute error is the mean error of predictions;
e.g., an average (user rating, CBF prediction) pair differed by 0.74 stars
on a 5-star scale.Predictable blocks is the number of blocks where the
technique could be applied.

cycling, this level of error may still be too high. A typi-
cal prediction by all three methods was wrong by roughly
one star or more, which corresponds (e.g.) to the difference
between ratings of “fair” and “good” – semantically critical
distinctions. Also, the cost of a poor route is high relative
to other domains: while a moviegoer who dislikes a rec-
ommended movie can simply stop watching, a cyclist sud-
denly encountering bad parts of a recommended route may
be stranded in an unfamiliar neighborhood.

In summary, simple user-driven methods may predict user
bikeability ratings better than generic methods. Addition-
ally, more sophisticated (and presumably better) generic
methods will be hard to implement. They require even more
data for each block – data often unavailable and difficult to
collect even using a wiki, which excels at qualitative data
but not the highly structured and quantitative data required.
On the other hand, more sophisticated user-based methods
such as collaborative filtering [21] require only block rat-
ings, which our experiment shows are easy for users to pro-
vide. Therefore, the computational geowiki approach seems
promising for the cycling domain.

CONCLUSION: SUMMARY AND FUTURE WORK
We have produced a computational geowiki, a new type
of system which enables interesting, useful, and novel ge-
ographic applications, overcoming significant interactivity
and performance challenges to do so. Our empirical re-
sults in the context of a representative community, bicyclists,
show that geowikis and computational geowikis are more ef-
fective than previous information gathering, exchange, and
analysis tools. These results support the general promise of
the technologies.

What are the implications of these results? First, route-
finding should consider user-contributed information both
when computing and presenting routes: route-finding algo-
rithms work better when user input is considered, and route
descriptions are enhanced by including user data (e.g., places
along the way and comments about route segments them-
selves). Second, information resources should support off-
topic conversation, rather than shunning it as noise, because
it can enhance the communities surrounding them. Finally,
wikis and other open-content systems should allow users to
contribute opinions as well as facts.



We will deploy our geowiki, Cyclopath16, for public use by
local cyclists in late summer 2008. From the perspective
of cyclists, it will be a valuable resource (22 of 29 subjects
asked when it would be available). From our perspective, it
will comprise a valuable research platform, enabling us to
explore important research questions, such as: How can we
integrate the use of mobile location-aware devices? (Cyclists
both need and acquire information while mobile.) What are
the privacy implications of geowikis, and how can risks be
mitigated? (1/3 of subjects expressed general concern about
privacy when asked.) And how can user input be most effec-
tively harnessed for automatic route-finding? Personalized
algorithms like collaborative filtering seem very promising
but suffer from severe sparsity problems. We plan to ex-
plore hybrid techniques, using collaborative-filtering-type
approaches when possible and falling back to (or mixing in)
simple averaging or generic methods when necessary.
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